

Lecture 12: Whitehead Theorem and CW approximation

We define the category $\underline{\mathbf{TopP}}$ of topological pairs where an object

is a topological space X with a subspace A, and morphisms $(X,A) \to (Y,B)$ are continuous maps

$$f: X \to Y$$
 such that $f(A) \subset B$.

A homotopy between two maps $f_1, f_2: (X, A) \to (Y, B)$ is a homotopy $F: X \times I \to Y$ between f_0, f_1 such that

$$F|_{X\times t}(A)\subset B$$
 for any $t\in I$.

The quotient category of $\underline{\mathbf{TopP}}$ by homotopy of maps is denoted by $\underline{\mathbf{hTopP}}$. The pointed versions are defined similarly and denoted by $\underline{\mathbf{TopP}}_*$ and $\underline{\mathbf{hTopP}}_*$. Morphisms in $\underline{\mathbf{hTopP}}$ and $\underline{\mathbf{hTopP}}_*$ are denoted by

$$[(X, A), (Y, B)],$$
 $[(X, A), (Y, B)]_0.$

When we work with the convenient category $\underline{\mathscr{T}}$, we have similar notions of $\underline{\mathscr{T}P}$ for a pair of spaces, $\underline{h\mathscr{T}P}$ for the quotient homotopy category, and $\underline{\mathscr{T}P}_{\star}, \underline{h\mathscr{T}P}_{\star}$ for the pointed cases.

Theorem

Let $f: (X, A) \to (Y, B)$ in $\underline{\mathbb{h} \mathscr{J} \mathbf{P}_{\star}}$. Let $\overline{f} = f|_{A}$. Then the sequence

$$(X,A) \rightarrow (Y,B) \rightarrow (C_f,C_{\bar{f}}) \rightarrow \Sigma(X,A) \rightarrow \Sigma(Y,B) \rightarrow \Sigma(C_f,C_{\bar{f}}) \rightarrow \Sigma^2(X,A) \rightarrow \cdots$$

is co-exact in $h\mathcal{F}P_{\star}$.

This generalizes the co-exact Puppe sequence to the pair case.

Let $(X, A) \in \underline{\mathscr{T}\mathbf{P}_{\star}}$. We define the relative homotopy group by

$$\pi_n(X, A) = [(D^n, S^{n-1}), (X, A)]_0.$$

We will also write $\pi_n(X, A; x_0)$ when we specify the base point.

Note that

$$(D^n, S^{n-1}) \simeq \Sigma^{n-1}(D^1, S^0), \quad n \ge 2.$$

 $\pi_n(X, A)$ is a group for $n \geq 2$ due to the adjunct pair (Σ, Ω) .

Lemma

 $f:(D^n,S^{n-1})\to (X,A)$ is zero in $\pi_n(X,A)$ if and only if f is homotopic rel S^{n-1} to a map whose image lies in A.

This lemma can be illustrated by the following diagram

$$\begin{array}{ccc}
S^{n-1} & \longrightarrow & A \\
\downarrow & & \downarrow & \downarrow \\
D^n & & \downarrow & X
\end{array}$$

Here g maps D^n to A and $g \simeq f$ rel S^{n-1} .

$$F: D^n \times I \to X$$
 s.t. $F(-,0) = x_0, F(-,t) \in A, F(-,1) = f(-).$

Let us view the restriction of F to $S^{n-1} \times I \cup D^n \times \{0\}$ as defining a map (via a natural homeomorphism)

$$g:(D^n,S^{n-1})\to (X,A).$$

Then F can be viewed as a homotopy $g\simeq f$ rel S^{n-1} as required. Conversely, assume there exists $g:(D^n,S^{n-1})\to (X,A)$ such that $g\simeq f$ rel S^{n-1} . Let

$$F: D^n \times I \rightarrow D^n$$

be a homotopy from the identity to the trivial map. Then

$$F \circ g : D^n \times I \to X$$

shows that $[g]_0 = 0$, hence $[f]_0 = 0$ as well.

Theorem

Let $A \subset X$ in $\underline{\mathscr{T}_{\star}}$. Then there is a long exact sequence

$$\cdots \to \pi_n(A) \xrightarrow{i_*} \pi_n(X) \xrightarrow{j_*} \pi_n(X, A) \xrightarrow{\partial} \pi_{n-1}(A) \cdots \to \pi_0(X)$$

Here the boundary map ∂ sends $\varphi \in [(D^n, S^{n-1}), (X, A)]_0$ to its restriction to S^{n-1} .

Consider

$$f: (S^0, \{0\}) \to (S^0, S^0).$$

Let $\bar{f} = f|_{\{0\}} : \{0\} \to S^0$. It is easy to see that

$$(C_f, C_{\overline{f}}) \simeq (D^1, S^0).$$

Since $\Sigma^n(S^0) = S^n, \Sigma(D^n, S^{n-1}) = (D^{n+1}, S^n)$, the co-exact sequence

$$(S^0,\!\{0\}) \!\to\! (S^0,\!S^0) \!\to\! (D^1,\!S^0) \!\to\! (S^1,\!\{0\}) \!\to\! (S^1,\!S^1) \!\to\! (D^2,\!S^1) \!\to\! (S^2,\!\{0\}) \!\to\! \cdots$$

implies the exact sequence

$$\cdots \to \pi_n(A) \xrightarrow{i_*} \pi_n(X) \xrightarrow{j_*} \pi_n(X, A) \xrightarrow{\partial} \pi_{n-1}(A) \cdots \to \pi_0(X)$$

A pair (X, A) is called n-connected (n ≥ 0) if $\pi_0({\it A}) \to \pi_0({\it X})$ is surjective and

$$\pi_k(X, A; x_0) = 0 \quad \forall 1 \le k \le n, x_0 \in A.$$

From the long exact sequence

$$\cdots \to \pi_n(A) \xrightarrow{i_*} \pi_n(X) \xrightarrow{j_*} \pi_n(X, A) \xrightarrow{\partial} \pi_{n-1}(A) \cdots \to \pi_0(X)$$

we see that (X, A) is *n*-connected if and only if for any $x_0 \in A$

$$\begin{cases} \pi_r(A, x_0) \to \pi_r(X, x_0) \text{ is bijective for } r < n \\ \pi_n(A, x_0) \to \pi_n(X, x_0) \text{ is surjective} \end{cases}$$

A map $f: X \to Y$ is called an n-equivalence $(n \ge 0)$ if for any $x_0 \in X$

$$\begin{cases} f_* : \pi_r(X, x_0) \to \pi_r(Y, f(x_0)) \text{ is bijective for } r < n \\ f_* : \pi_n(X, x_0) \to \pi_n(Y, f(x_0)) \text{ is surjective} \end{cases}$$

f is called weak homotopy equivalence or ∞ -equivalence if f is n-equivalence for any $n \ge 0$.

Example

For any $n \ge 0$, the pair (D^{n+1}, S^n) is n-connected.

Whitehead Theorem

Lemma

Let X be obtained from A by attaching n-cells. Let (Y,B) be a pair such that

$$\begin{cases} \pi_n(Y, B; b) = 0, \forall b \in B & \text{if} \quad n \ge 1 \\ \pi_0(B) \to \pi_0(Y) & \text{is surjective} & \text{if} \quad n = 0. \end{cases}$$

Then any map from $(X, A) \rightarrow (Y, B)$ is homotopic rel A to a map from X to B.

Proof.

This follows from the universal property of push-out

Theorem

Let (X,A) be a relative CW complex with relative dimension $\leq n$. Let (Y,B) be n-connected $(0\leq n\leq \infty)$. Then any map from (X,A) to (Y,B) is homotopic relative to A to a map from X to B.

Proof.

Apply the previous Lemma to

$$A \subset X^0 \subset X^1 \subset \cdots \subset X^n = X$$

and observe that all embeddings are cofibrations.

Proposition

Let $f: X \to Y$ be a weak homotopy equivalence, P be a CW complex. Then

$$f_*:[P,X]\to[P,Y]$$

is a bijection.

We can assume f is an embedding and (Y, X) is ∞ -connected. Otherwise replace Y by M_f .

Surjectivity is illustrated the diagram (applying previous Theorem to the pair (P,\emptyset)

Injectivity is illustrated by the diagram (observing $P \times I$, $P \times \partial I$ are CW complexes)

Theorem (Whitehead Theorem)

A map between CW complexes is a weak homotopy equivalence if and only if it is a homotopy equivalence.

Let $f: X \to Y$ be a weak homotopy equivalence between CW complexes. Apply previous Prop to P = X, Y, we find bijections

$$f_*:[X,X]\to [X,Y],\quad f_*:[Y,X]\to [Y,Y].$$

Let $g \in [Y, X]$ such that $f_*[g] = 1_Y$. Then $f \circ g \simeq 1_Y$.

On the other hand,

$$f_*[g \circ f] = [f \circ g \circ f] \simeq [f \circ 1] = [f] = f_*[1_X].$$

We conclude $[g \circ f] = 1_X$. Therefore f is a homotopy equivalence. The reverse direction is obvious.

Cellular approximation

Let (X, Y) be CW complexes. A map $f: X \to Y$ is called cellular if $f(X^n) \subset Y^n$ for any n. We define the category $\underline{\mathrm{CW}}$ whose objects are CW complexes and morphisms are cellular maps.

Definition

A cellular homotopy between two cellular maps $X \to Y$ of CW complexes is a homotopy $X \times I \to Y$ that is itself a cellular map. Here I is naturally a CW complex. We define the quotient category $\underline{\operatorname{hCW}}$ of $\underline{\operatorname{CW}}$ whose morphisms are cellular homotopy class of cellular maps.

Lemma

Let X be obtained from A by attaching n-cells $(n \ge 1)$, then (X,A) is (n-1)-connected.

Corollary

Let (X, A) be a relative CW complex, then for any $n \ge 0$, the pair (X, X^n) is n-connected.

Theorem

Let $f\colon (X,A) \to (\tilde{X},\tilde{A})$ between relative CW complexes which is cellular on a subcomplex (Y,B) of (X,A). Then f is homotopic rel Y to a cellular map $g\colon (X,A) \to (\tilde{X},\tilde{A})$.

Assume we have constructed $f_{n-1}:(X,A)\to (X,A)$ which is homotopic to f rel Y and cellular on the (n-1)-skeleton X^{n-1} . Since (\tilde{X},\tilde{X}^n) is n-connected,

we can find a homotopy rel X^{n-1} from $f_{n-1}|_{X^n}: X^n \to \tilde{X}$ to a map $X^n \to \tilde{X}^n$. Since f is cellular on Y, we can choose this homotopy rel Y by adjusting only those n-cells not in Y. This homotopy extends to a homotopy rel $X^{n-1} \cup Y$ from f_{n-1} to a map $f_n: X \to \tilde{X}$ since $X^n \subset X$ is a cofibration. Then f_{∞} works.

Theorem (Cellular Approximation Theorem)

Any map between relative CW complexes is homotopic to a cellular map. If two cellular maps between relative CW complexes are homotopic, then they are cellular homotopic.

Proof.

Apply the previous Theorem to (X, \emptyset) and $(X \times I, X \times \partial I)$.

CW approximation

A CW approximation of a topological space Y is a CW complex X with a weak homotopy equivalence $f\colon X\to Y$.

Theorem

Any space has a CW approximation.

We may assume Y is path connected. We construct a CW approximation X of Y by induction on the skeleton X^n . Assume we have constructed $f_n: X^n \to Y$ which is an n-equivalence. We attach an (n+1)-cell to every generator of $\ker(\pi_n(X^n) \to \pi_n(Y))$ to obtain \tilde{X}^{n+1} . We can extend f_n to a map $\tilde{f}_{n+1}: \tilde{X}^{n+1} \to Y$

Since (\tilde{X}^{n+1}, X^n) is also *n*-connected, \tilde{f}_{n+1} is an *n*-equivalence. By construction and the surjectivity of $\pi_n(X^n) \to \pi_n(\tilde{X}^{n+1})$, \tilde{f}_{n+1} defines also an isomorphism for $\pi_n(\tilde{X}^{n+1}) \to \pi_n(Y)$

Now for every generator S^{n+1}_{α} of $\operatorname{coker}(\pi_{n+1}(\tilde{X}^{n+1}) \to \pi_{n+1}(Y))$, we take a wedge sum to obtain

$$X^{n+1} = \tilde{X}^{n+1} \vee (\vee_{\alpha} S^{n+1}).$$

Then the induced map $f_{n+1}: X^{n+1} \to Y$ extends f_n to an (n+1)-equivalence. Inductively we obtain a weak homotopy equivalence $f_{\infty}: X = X^{\infty} \to Y$.

Theorem

Let $f\colon X\to Y$. Let $\Gamma X\to X$, and $\Gamma Y\to Y$ be CW approximations. Then there exists a unique map in $[\Gamma X,\Gamma Y]$ making the following diagram commutes in $\underline{\mathbf{hTop}}$

$$\begin{array}{ccc}
\Gamma X & \xrightarrow{\Gamma f} \Gamma Y \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} Y
\end{array}$$

Proof.

Weak homotopy equivalence of $\Gamma Y \to Y$ implies the bijection $[\Gamma_X, \Gamma_Y] \to [\Gamma_X, Y]$.

Two spaces X_1, X_2 are said to have the same weak homotopy type if there exists a space Y and weak homotopy equivalences $f_i: Y \to X_i, i = 1, 2$.

Theorem

Weak homotopy type is an equivalence relation.